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Abstract. A simple finite-field scheme of calculations on electronic transition dipole moments in molecules
by effective Hamiltonian methods is presented and discussed. The reliability of underlying approximations
is analyzed by means of the quasidegenerate perturbation theory and corroborated by the results of pilot
numerical applications.

PACS. 31.25.-v Electron correlation calculations for atoms and molecules – 31.50.+w Excited states –
33.70.Ca Oscillator and band strengths, lifetimes, transition moments, and Franck-Condon factors

1 Introduction

The finite-field (FF) technique [1,2] is recognized to
be a valuable tool for theoretical evaluation of molecu-
lar properties other than the energy. Numerous studies
[3–5] have demonstrated its capability to provide highly
accurate electric multipole moments and polarizabilities
of molecules in pure electronic states. A straightforward
generalization of the FF approach to the description of
transition properties [6,7] allows to use it in theoretical
studies of spectral intensities and radiative lifetimes of ex-
cited electronic states. As has been recently shown [7], the
finite-field transition dipole moment (TDM) estimates are
normally less sensitive to the level of correlation treatment
than directly computed off-diagonal electric dipole matrix
elements between the initial and final states.

Finite-field TDM estimates are derived from the re-
sponse of electronic wavefunctions to a perturbation by
external uniform electric field, and the computational
scheme of the method implies the construction of approx-
imate wavefunctions for several values of field intensity.
At the same time popular procedures of correlation elec-
tronic structure calculations based on the effective Hamil-
tonian theory ([8,9] and references therein) usually avoid
the explicit construction of total approximate electronic
wavefunctions and provide, along with energy values, only
so-called model wavefunctions, i.e. the projections of total
wavefunctions onto a given subspace of the total functional
space (model space).

The present paper formulates and examines an ele-
mentary approach to FF transition moment calculations
within the framework of effective Hamiltonian theory,
based on the analysis of the response of model wavefunc-
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tions to an external perturbation. For the sake of simplic-
ity we restrict our attention to the case of fixed (field-
independent) model spaces; it should be noted, however,
that our approach can be naturally combined with the
field-dependent optimization of model spaces.

Section 2 provides a brief outline of the FF method for
transition moment calculations. In the next section we an-
alyze the off-diagonal Hellmann-Feynman-like relation for
effective Hamiltonian eigenstates which provides the the-
oretical basis for the present approach. The reliability of
model-space FF transition moment estimates is discussed
in Section 4. The last section contains the concluding
remarks.

2 Finite-field method for transition moment
calculations

The FF method derives the estimate for transition dipole
moment Dif between two stationary electronic states |ψi〉,
|ψf 〉 from the response of these states to a perturbation by
an external uniform electric field. Let us recall the main
points of this approach. The dependence of the molecular
electronic Hamiltonian H on the external field intensity F
is given by the formula

H(F ) = h−DF, (1)

where D = −(∂H/∂F ) is the electric dipole operator and
h ≡ H(0) stands for the Hamiltonian of the free molecule.
The exact F -dependent eigenfunctions |ψi〉, |ψf 〉, and the
eigenvalues Ei, Ef of (1) should satisfy the off-diagonal
Hellmann-Feynman theorem

〈Ψi|D|Ψf 〉 = (Ei −Ef )
〈
Ψi|

∂

∂F
Ψf
〉
|F=0. (2)
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In what follows we shall restrict our attention to small field
intensities and the symbol |F=0 will be omitted. The FF
transition dipole moment estimate is given by the finite-
difference approximation for the r.h.s. of equation (2):

(DFF
if )η = (Ei −Ef ) lim

Fη→0
Fη′ 6=η=0

(
〈Ψi(−Fη/2)|Ψf (Fη/2)〉

Fη

)
,

η = x, y, z. (3)

For approximate eigenstates resulted from practical
ab initio calculations,DFF

if can differ from the correspond-

ing off-diagonal dipole matrix element 〈Ψi|D|Ψf 〉 (dipole
length form of transition moment, or DDL

if ). Nevertheless

one easily verifies that the relations (1–2) are still valid
for approximate wavefunctions obtained by diagonalizing
H(F ) within a fixed (F -independent) subspace of the to-
tal Hilbert space. This implies the strict equivalence of the
finite-field and dipole length transition moment estimates
by variational configuration expansion methods provided
that the same MO set is employed for calculations with
different F values. Independent optimization of molecular
orbitals for each field intensity destroys this equivalence,
and the use of DFF

if which incorporate MO relaxation ef-

fects appears to be a priori preferable [7]. As we shall see
later, DFF

if should also differ from DDL
if when the eigen-

states of H are approximated by the corresponding eigen-
states of an effective Hamiltonian.

3 Hellmann-Feynman-like relation for model
eigenstates

Let us divide the total functional space L into a model
space LP with its projector P and an outer space LQ
projected by Q = 1 − P . We shall assume that this par-
titioning does not depend on the field intensity F . An
effective Hamiltonian H̃ acting within LP and having the
eigenvalues identical to (dim LP ) eigenenergies of H

H̃|Ψ̃j〉 = Ej |Ψ̃j〉 (4)

should satisfy the generalized Bloch equations [10]

HΩ = ΩH̃. (5)

Here Ω = ΩP is the (right) wave operator which trans-

forms the right eigenvectors of H̃ into the target eigenvec-
tors of the total Hamiltonian:

Ω|Ψ̃j〉 = |Ψj〉. (6)

It is convenient to introduce the left wave operator Ω⊥⊥

[11,12] which effects the inverse mapping:

Ω⊥⊥Ω = P, (7)

ΩΩ⊥⊥ =

dimLP∑
j=1

|Ψj〉〈Ψj |. (8)

The effective Hamiltonian is given in terms of the wave
operators by the equation

H̃ = Ω⊥⊥HΩ. (9)

Note that H̃ is generally non-Hermitian and its left
eigenvectors {|Ψ̃⊥⊥j 〉} differ from {|Ψ̃j〉}. The right and
left eigenvectors are biorthogonal and we can normalize
{|Ψ̃⊥⊥j 〉} by the conditions

〈Ψ̃⊥⊥j |Ψ̃k〉 = δjk, (10)

i.e. in such a way that

〈Ψ̃⊥⊥j |H̃|Ψ̃k〉 = δjkEj . (11)

Provided that equations (4–5) are solved, one can in prin-
ciple obtain transition dipole moment values via calculat-
ing the total electronic wavefunctions |Ψ̃j〉, |Ψ̃f 〉 by means
of the wave operator (see Eq. (6)). However, explicit con-
struction of the wavefunctions and even the storage of the
wave operator usually appear to be incompatible with the
computational efficiency. Within the dipole length repre-
sentation the problem is naturally solved by introducing
the effective electric dipole operator D̃ acting upon LP
[12–14]. We shall adopt the definition of effective opera-
tors given in [12]:

D̃ = Ω⊥⊥DΩ. (12)

Using (12), one can express transition dipole moments en-
tirely in terms of model-space entities since

〈Ψi|D|Ψf 〉 = 〈Ψ̃⊥⊥i |D̃|Ψ̃f 〉. (13)

To adapt the FF technique to the framework of effective
Hamiltonian theory, one might try to relate the matrix
element (13) directly to the response of model wavefunc-
tions to the external perturbation. Differentiating equa-
tions (10, 11) with respect to the electric field intensity,
one readily arrives at a Hellmann-Feynman-like relation

−〈Ψ̃⊥⊥i |
∂H̃

∂F
|Ψ̃f 〉 = (Ei −Ef )〈Ψ̃⊥⊥i |

∂

∂F
Ψ̃f 〉. (14)

The r.h.s. of equation (14) is formally similar to that of
equation (2) and may be evaluated by a finite-difference
scheme. The resulting value which we shall denote by
DFF
if is the FF TDM estimate provided that the model

wavefunctions are considered as approximations for total
wavefunctions. This estimate is obviously not exact since
−∂H̃/∂F does not coincide with the effective dipole oper-
ator (12). To find the relation connecting these two oper-
ators, let us differentiate equation (9) with respect to F :

∂H̃

∂F
= −D̃ +

∂Ω⊥⊥

∂F
HΩ +Ω⊥⊥H

∂Ω

∂F
· (15)

Making use of the Bloch equation (5), its “left” counter-
part

H̃Ω⊥⊥ = Ω⊥⊥H. (16)
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and taking into account the differential form of equa-
tion (7), one can transform equation (15) to

∂H̃

∂F
= −D̃ −

[
Ω⊥⊥

∂Ω

∂F
, H̃

]
. (17)

The deviations of the model-space FF transition moment
estimates from corresponding exact values arise from the
presence of commutator in the r.h.s. of equation (17):

DFF
if −Dif = 〈Ψ̃⊥⊥i |[Ω⊥⊥

∂Ω

∂F
, H̃]|Ψ̃f 〉

= (Ef −Ei)〈Ψ̃
⊥⊥
i |Ω⊥⊥

∂Ω

∂F
|Ψ̃)f 〉. (18)

4 Perturbative analysis and numerical
illustrations

In order to evaluate the reliability of the model-space FF
transition moment estimates DFF

if we shall analyze the

deviation of −∂H̃/∂F from D̃ by means of the quaside-
generate perturbation theory (QDPT). Suppose that the
free-molecule Hamiltonian h is split into a zero-order part
h0 and a perturbation v in such a way that

h0P = Ph0 (19)

and the exact eigensolutions of the zero-order problem

h0|k〉 = εk|k〉 (20)

are available. This splitting naturally induces a similar
partitioning of the Hamiltonian (1):

H(F ) = h0 + V, V = v −DF. (21)

Now we can expand the effective operators in powers of V
and compare −∂H̃/∂F and D̃ order by order at F = 0.
Explicit formulas for effective Hamiltonian expansions can
be found elsewhere [10,15,16]. The expansions for effective
property operators are readily derived from well-known
QDPT series for wave operators [10–15]. If we adopt the
intermediate normalization

PΩ = P, or |Ψ̃j〉 = P |Ψj〉, (22)

the first terms in the D̃ expansion are given by

D̃(0) = PDP,

D̃(1) = Ω(1)†DP + PDΩ(1),

D̃(2) = Ω(2)†DP + PDΩ(2) +Ω(1)†DΩ(1)

−Ω(1)†Ω(1)DP etc. (23)

Since V is a linear function of the field intensity and
∂H̃(q)/∂F = (∂H̃/∂F )(q−1), the derivative of the qth
order effective Hamiltonian should be compared with

D̃(q−1). Let us begin with noting that H̃(0÷1) ≡ H̃(0) +
H̃(1) = PHP and

−
∂H̃(0÷1)

∂F
= PDP = D̃(0). (24)

Equation (24) reflects the well-known fact that the
off-diagonal Hellmann-Feynman theorem (2) holds for
approximate eigenstates obtained by diagonalizing the
Hamiltonian within any fixed subspace (cf. [17]). The
second-order correction to the effective Hamiltonian is ex-
pressed by the formula

H̃(2) =
∑
mn

∑
a

|m〉
HmaHan

∆na
〈n| (25)

where the indices m,n, · · · and a, b, · · · are used for model-
space and outer-space zero-order solutions respectively,
∆na ≡ εn − εa and Hma = 〈m|H|a〉 = 〈m|V |a〉 (we sup-
pose that these matrix elements are real). The derivative
of (25) at F = 0 is given by

−
∂H̃(2)

∂F
=
∑
mn

∑
a

|m〉
Dmahan + hmaDan

∆na
〈n|. (26)

One easily notes that (26) resembles the well-known ex-

pression for D̃(1):

D̃(1) =
∑
mn

∑
a

|m〉

(
Dmahan

∆na
+
hmaDan

∆ma

)
〈n|. (27)

Provided that h0 is strictly degenerate within the model
space (εm = εn = · · · = ε0), the r.h.s. of equations (26,
27) coincide and

−
∂H̃(2)

∂F
= D̃(1). (28)

In this case the difference between the order-by-order
expansions of −∂H̃/∂F and D̃ first appears only at

the second order (third order for H̃) and comprises
“renormalization-like” terms:

−
∂H̃(3)

∂F
= D̃(2) +

∑
mn

|m〉Gmn〈n|,

Gmn =
∑
m′a

(vmm′hm′aDan − hmaDam′vm′n)∆−2
a

=
∑
m
′
:

m′ 6=m
m′ 6=n

∑
a

(hmm′hm′aDan − hmaDam′hm′n∆
−2
a

+
∑
a

(hmaDan(hmn − hnn)

− hmn(hmaDam − hnaDan))∆−2
a ,

∆a = ε0 − εa. (29)

For non-degenerate cases equation (28) does not hold;
however, provided that

|∆na −∆ma| � |∆na| (30)



306 The European Physical Journal D

for all m, n, a: |m〉, |n〉 ∈ LP , |a〉 ∈ LQ, the operator (26)
should still reasonably fit the first-order correction for the
effective dipole operator and therefore

DFF
if
∼= 〈Ψ̃⊥⊥i |D̃(0÷1)|Ψ̃f 〉. (31)

Moreover, the approximate relation (31) remains valid
even when the requirement (30) is fulfilled only for the
model-space vectors |m〉, |n〉 with large weights in the

target model functions |Ψ̃i〉, |Ψ̃f 〉, and the outer-space
vectors |a〉 strongly coupled to the model space. Equa-
tions (28, 31) indicate that the FF transition dipole mo-
ments DFF

if computed with the model-space functions

|Ψ̃i〉, |Ψ̃f 〉, comprise the bulk of first-order contributions
to TDM values from outer-space vectors. In contrast, if
one uses the same functions as approximate wavefunc-
tions for direct computation of transition matrix element
DDL
if = 〈Ψ̃⊥⊥i |D|Ψ̃f 〉 = 〈Ψ̃⊥⊥i |D̃(0)|Ψ̃f 〉, such contributions

will be lost.
Similar conclusions can be drawn from the analysis

of various types of effective operators. Let us first notice
that the particular choice of normalization (22) is not of
importance. For instance, in passing to the isometry nor-
malization conditions [18], one arrives at the following ex-
pressions for the Hermitian second-order effective Hamil-
tonian [15] and its derivative:

H̃(2) =
1

2

∑
mn

∑
a

|m〉Hma(∆−1
ma +∆−1

na )Han〈n| (32)

−
∂H̃2

∂F
=

1

2

∑
mn

∑
a

|m〉(Dmahan + hmaDan)

× (∆−1
ma +∆−1

na )〈n| (33)

while the first-order effective dipole operator is still given
by the formula (27). The comparison of equations (27, 33)
immediately leads to (31) under the same conditions. It is

noteworthy that the Hermiticity of H̃ and its derivative
resulting from the choice of the isometric normalization
guarantees that DDL

if = DDL
fi , while the use of the nor-

malization (22) gives rise to a spurious difference between
i → f and f → i FF TDM values. Furthermore, the
formulas (25, 27) (or (33, 27)) with somewhat differ-
ent definitions of energy denominators yield second-
order state-specific Hamiltonians and corresponding first-
order effective property operators appearing in the
intermediate-Hamiltonian QDPT [8,19,20] or multiparti-
tioning perturbation theory (MPPT) [21], and the argu-
mentation given above is also applicable to these cases.

With an appropriate choice of model spaces, effec-
tive Hamiltonian methods take advantage from the in-
homogeneity of electron correlation effects [22]. The non-
dynamic (internal, left-right) correlations are associated
with the interaction of model-space configurations while
the dynamic correlations arise from the coupling between
the model and outer spaces. It is convenient to distin-
guish the “direct” dynamic (outer-space) contributions to
a property under study and interference effects resulting

Table 1. Transition dipole moments for the vertical excitations
X1Ag → 1, 21B1u of the ethylene molecule, a.u.

Model Method X1Ag → 11B1u X1Ag → 21B1u

space DDL
if DFF

if DDL
if DFF

if

val-π(a) model space CI 0.962 0.738

DPT/2 1.604 1.430 0.395 0.325

MPPT/2 1.539 1.389 0.415 0.346

full-π(b) model space CI 1.122 0.750

MPPT/2 1.559 1.349 0.453 0.378

full-2el(c) model space CI 1.186 0.736

MPPT/2 1.565 1.358 0.451 0.377

DDCI(d) 1.351 0.365

MRCI [28] 1.33

Active MO spaces comprised, (a) eight lowest-energy valence-
and Rydberg-like π-MO, (b) all the π-MO, (c) all MO’s except
for those of doubly-occupied σ-shell. (d) The DDCI calculations
were performed using the model space (val−π) as the reference
space.

from the influence of LP−LQ couplings on the model-
space part of the wavefunctions via the effective interac-
tions [22]. If we evaluate the TDM from the PHP eigen-
states, the dynamic correlations are completely ignored.
The DDL

if values computed with the model wavefunctions
take into account the interference effects but the direct
dynamic contributions are still neglected. Equation (31)
shows that the DFF

if estimates should incorporate, along
with the interference effects, essential direct effects of dy-
namic correlations.

Let us consider a simple numerical illustration. The
lowest 1B1u states of the ethylene molecule provide a well-
known example of strong interferences between π−π (non-
dynamic) and σ−π (dynamic) correlations. While the
X → 1, 21B1u transitions can be described essentially in
terms of π → π-substitutions, a proper description of the
σ−π-correlations is of crucial importance for reproducing
the valence-like nature of the 11B1u(V ) state (see [20] and
references therein for a detailed discussion). Our effective
Hamiltonian calculations on the vertical X → 1, 21B1u

transitions of ethylene were performed with three differ-
ent complete model spaces arising from all the possible
distributions of two “π” electrons among the active or-
bitals (see Tab. 1); in all cases, the σ−π-correlations were
associated with the LP−LQ coupling. The employed ba-
sis set comprised the atomic contracted Gaussian bases
(5s3p2d) C [23], (3s1p) H [24] and primitive diffuse Gaus-
sians (2p2d) on the molecular center of masses. A fixed
(field-independent) MO set ensuring a roughly balanced
description of valence-like and Rydberg states was gener-
ated by solving the fractional-occupancy SCF equations
for the field-free (C2H4)+0.5 problem. Hermitian effec-
tive Hamiltonians were constructed by the second-order
many-body MPPT method (MPPT/2) [21], employing
the diagrammatic algorithm [25]; for the smallest model
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space we also used the degenerate perturbation theory
(DPT/2) with “forced degeneracy” of active orbital en-
ergies [26]. For the sake of comparison we carried out ex-
tensive difference-dedicated CI (DDCI) [27] calculations
with the same orbital basis set. Let us remind that the
dipole-length and finite-field CI TDM values should co-
incide since the MO’s (and therefore the variational CI
spaces) do not depend on the field intensity (cf. Sect. 2).

The results are listed in Table 1. In all cases the TDM
estimates derived from the model-space (two-electron CI)
problem are rather poor because of the complete neglect
of σ−π-correlations. In passing to the eigenstates of the ef-
fective Hamiltonians the computed TDM change dramat-
ically. One should notice that the proper account for the
correlation interference effects in the off-diagonal dipole
matrix element (DDL

if ) calculations is necessary but ob-
viously not sufficient for obtaining accurate TDM values,
and only the incorporation of the direct contributions from
the σ−π-excitations by means of the FF technique ensures
a good agreement with the results of extensive CI treat-
ment. Finally let us try to predict the general trends in
accuracy of the method proposed above. Provided that
the perturbation v is rather small, the basic require-
ment (30) is hardly fulfilled even for the vectors |m〉, |n〉
dominating the initial and final states when |Ei − Ef | is
large. The uselessness of any attempt to bypass this diffi-
culty by introducing an additional diagonal “degeneracy-
forcing” perturbation is illustrated by the presence of the
terms proportional to hmm − hnn in equation (29). As a
consequence, one might expect that the accuracy of our
FF results will decrease with the increase of transition
energies.

The results of our test MPPT/2 calculations on transi-
tion dipole moments for the benchmark system CH+ seem
to corroborate this hypothesis. To enable the comparison
with the full CI data of Olsen et al. [24] we employed
the same basis set and fixed the internuclear distance at
2.13713 a.u. Field-free molecular orbitals from the ground-
state SCF calculations on CH2+ were used. A series of
model spaces of increasing size was constructed by the nu-
merical selection of large-weight Slater determinants. The
deviations of obtained DDL

if and DFF
if values from the cor-

responding full-CI TDM are plotted in Figure 1. For the
lowest-energy transition the convergence of the DFF

if val-
ues to the full-CI one with the extension of the model
space is much faster than that for DDL

if ’s due to an accu-
rate estimation of direct outer-space contributions by the
FF scheme. For higher-energy transitions the difference of
convergence rates is not so large; this is readily explained
by a relatively low accuracy of the approximation (31).

5 Conclusions

A straightforward adaptation of the finite-field technique
to the calculations on electronic transition dipole moments
by effective Hamiltonian methods is presented. Approxi-
mate transition moments are derived from the response
of the effective Hamiltonian eigenvectors to the pertur-
bation by a small uniform electric field. Although these

Fig. 1. Absolute deviations (δ) of calculated transition dipole
moments in CH+ from the corresponding full CI values [24].
Solid squares: model space CI results, empty circles: DDL

if , solid

circles: DFF
if .

eigenvectors do not comprise any outer space component,
the finite-field TDM values implicitly incorporate the bulk
of direct outer-space contributions which can be neces-
sary for obtaining quantitative results. The latter state-
ment is valid both for conventional (state-universal) and
intermediate (state-specific) effective Hamiltonians with
various choices of wave-operator normalization conditions.
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The accuracy of FF TDM estimates should decrease with
the increase of transition energies.

Our analysis concerns the case of fixed (field-
independent) model spaces. However, our FF scheme can
be immediately combined with the field-dependent opti-
mization of the model space (e.g. by a state-average MC-
SCF procedure), thus enabling one to take advantage from
the proper account for orbital relaxation effects.

The DFF
if values are uniquely defined by the field-

dependent effective Hamiltonian, and the construction of
the effective dipole operator is avoided. This seems to be
of particular importance for state-selective (intermediate
Hamiltonian) theories [8] and model approaches suffering
from the difficulties in consistent definition of different ef-
fective operators. Finally, the present analysis can give
some insight into the theoretical background and limita-
tions of TDM calculations within field-dependent model
Hamiltonian approaches such as the polarization pseu-
dopotential method [29–31].
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